Search results for " Gamma Knife treatment"
showing 5 items of 5 documents
A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning
2017
The aim of this study is to combine Biological Target Volume (BTV) segmentation and Gross Target Volume (GTV) segmentation in stereotactic neurosurgery.Our goal is to enhance Clinical Target Volume (CTV) definition, including metabolic and morphologic information, for treatment planning and patient follow-up.We propose a fully automatic approach for multimodal PET and MR image segmentation. This method is based on the Random Walker (RW) and Fuzzy C-Means clustering (FCM) algorithms. A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is presented, considering volume…
Gamma Knife treatment planning: MR brain tumor segmentation and volume measurement based on unsupervised Fuzzy C-Means clustering
2015
Nowadays, radiation treatment is beginning to intensively use MRI thanks to its greater ability to discriminate healthy and diseased soft-tissues. Leksell Gamma Knife® is a radio-surgical device, used to treat different brain lesions, which are often inaccessible for conventional surgery, such as benign or malignant tumors. Currently, the target to be treated with radiation therapy is contoured with slice-by-slice manual segmentation on MR datasets. This approach makes the segmentation procedure time consuming and operator-dependent. The repeatability of the tumor boundary delineation may be ensured only by using automatic or semiautomatic methods, supporting clinicians in the treatment pla…
Neuro-radiosurgery treatments: MRI brain tumor seeded image segmentation based on a cellular automata model
2016
Gross Tumor Volume (GTV) segmentation on medical images is an open issue in neuro-radiosurgery. Magnetic Resonance Imaging (MRI) is the most promi-nent modality in radiation therapy for soft-tissue anatomical districts. Gamma Knife stereotactic neuro-radiosurgery is a mini-invasive technique used to deal with inaccessible or insufficiently treated tumors. During the planning phase, the GTV is usually contoured by radiation oncologists using a manual segmentation procedure on MR images. This methodology is certainly time-consuming and op-erator-dependent. Delineation result repeatability, in terms of both intra- and inter-operator reliability, is only obtained by using computer-assisted appr…
An automatic method for metabolic evaluation of gamma knife treatments
2015
Lesion volume delineation of Positron Emission Tomography images is challenging because of the low spatial resolution and high noise level. Aim of this work is the development of an operator independent segmentation method of metabolic images. For this purpose, an algorithm for the biological tumor volume delineation based on random walks on graphs has been used. Twenty-four cerebral tumors are segmented to evaluate the functional follow-up after Gamma Knife radiotherapy treatment. Experimental results show that the segmentation algorithm is accurate and has real-time performance. In addition, it can reflect metabolic changes useful to evaluate radiotherapy response in treated patients.
Semi-automatic Brain Lesion Segmentation in Gamma Knife Treatments Using an Unsupervised Fuzzy C-Means Clustering Technique
2016
MR Imaging is being increasingly used in radiation treatment planning as well as for staging and assessing tumor response. Leksell Gamma Knife (R) is a device for stereotactic neuro-radiosurgery to deal with inaccessible or insufficiently treated lesions with traditional surgery or radiotherapy. The target to be treated with radiation beams is currently contoured through slice-by-slice manual segmentation on MR images. This procedure is time consuming and operator-dependent. Segmentation result repeatability may be ensured only by using automatic/semi-automatic methods with the clinicians supporting the planning phase. In this paper a semi-automatic segmentation method, based on an unsuperv…